

Using an equivalent slope error to quantify beam errors of heliostats

Ye Wang, Joe Coventry, John Pye Australian National University

17 July 2024 ASME 2024 Energy Sustainability Conference

conceptual design •

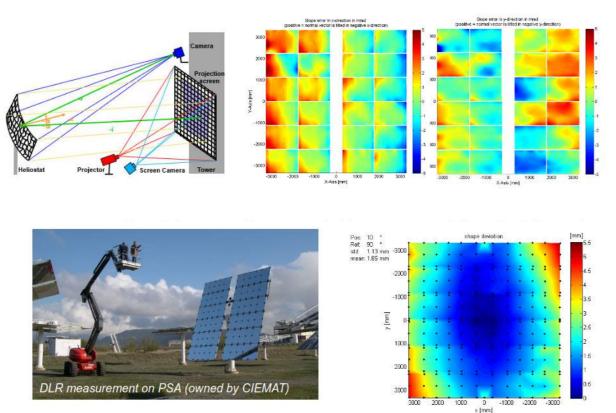
components •

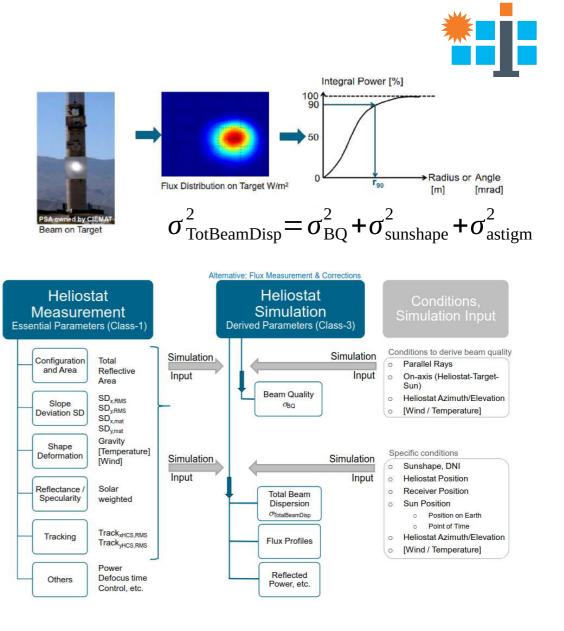
integration •

mass production

heliostat field

Types of beam errors

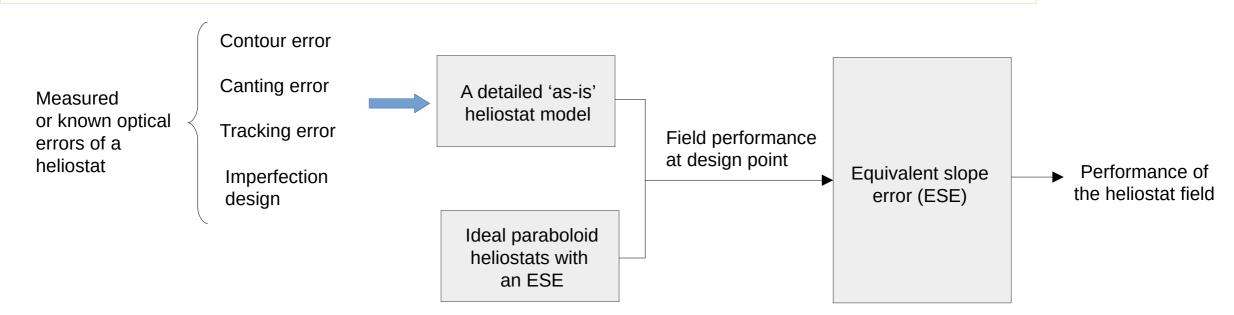



CONCENTRATOR HELIOSTAT TRACKING Incoming ⇒ n_{ideal} ⇒n_{ideal} beam ⇒n_{ideal} Changes caused n_{ideal} n_{real} n_{real} by varying loads n_{real} n_{real} Reflected of + + +beam cone - gravity - wind - temperature Waviness Contour Error (SD_{contour}) Canting Error (SD_{canting}) $\begin{smallmatrix} \Delta & \textit{SD}_{\text{grav}} \\ \Delta & \textit{SD}_{\text{wind}} \end{smallmatrix}$ Specularity Error (Spec) = Alignment Error = Roughness Error ΔSD_{temp} Tracking Deviation (Track) Slope Deviation / Error (SD) Specularity Error (Spec) Δ Slope Deviation (Δ *SD*) (surface error) in mrad (surface error) (changes surface error) (expressed as beam error). Beam Quality (BQ) Focus Deviation (Focus) (beam error) in m (beam error)

Roger et al, 2023. SolarPACES Guidline for Heliostat Performance Testing

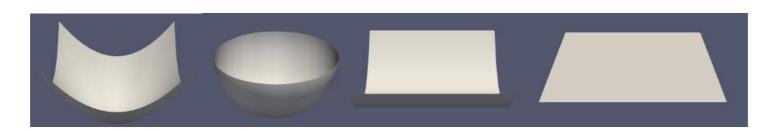
Measurement Method

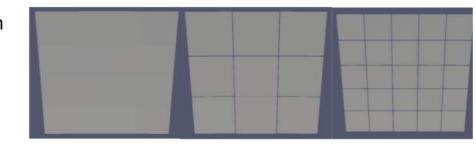
- Indirect method: flux mapping by a beam characterisation system (BCS)
- Direct method: deflectometry, photogrammetry, laser radar
 - \rightarrow slope deviation matrices in relation to ideal shape



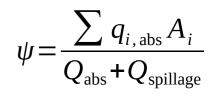
Objectives

- Establish the interface between measured data and optical simulations
- Convert measured optical errors into an equivalent model for whole field and annual performance analysis




Benefits of using an equivalent slope error:

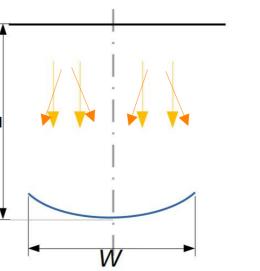
- A straightforward way to quantify beam quality
- A consistent way to compare the magnitude of different types of beam errors.
- Applicable using flux mapping or BCS data
- Easy to implement in ray-tracing simulations to perform heliostat field design, O&M planning, and annual performance analysis.


Method

- On-axis arrangement: no astigmatism error
- Perfect surface features: 0 slope error, 100% reflectivity
- Irradiation source
 - Collimated rays
 - Buie sunshape 2%
- Four reflector shapes
 - Paraboloid
 - > Sphere
 - Parabolic-cylinder
 - > Flat
- Different heliostat design
 - Single facet
 - 3×3
 - 5×5

• Energy capture percentage

• Different slant range distances: 100, 500, 1000m

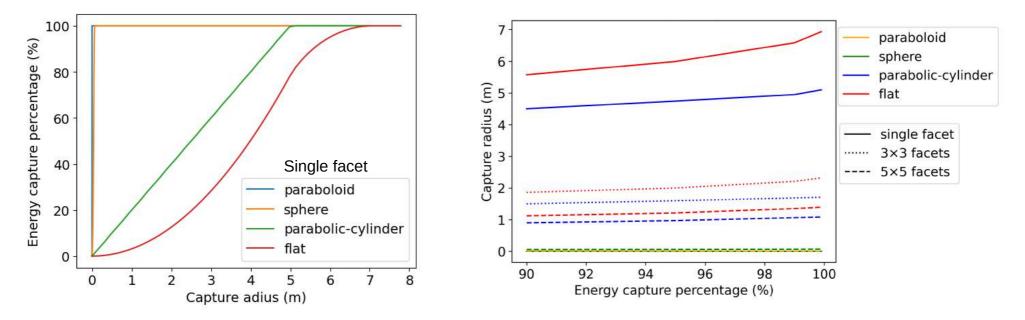

conceptual design •

components •

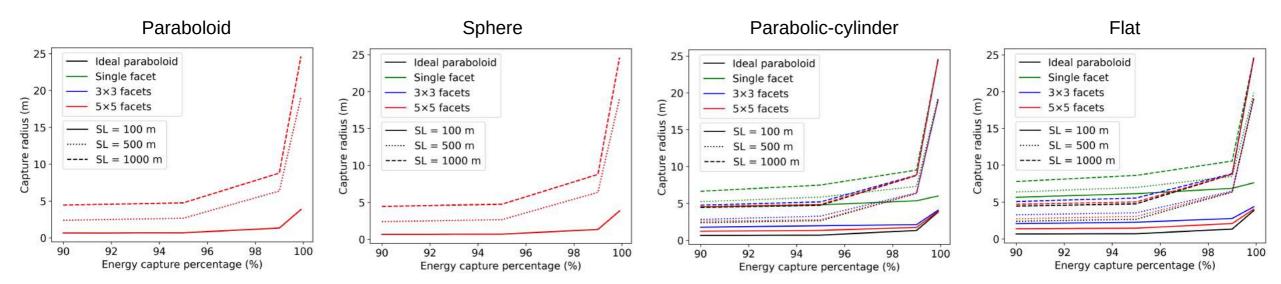
integration • mass

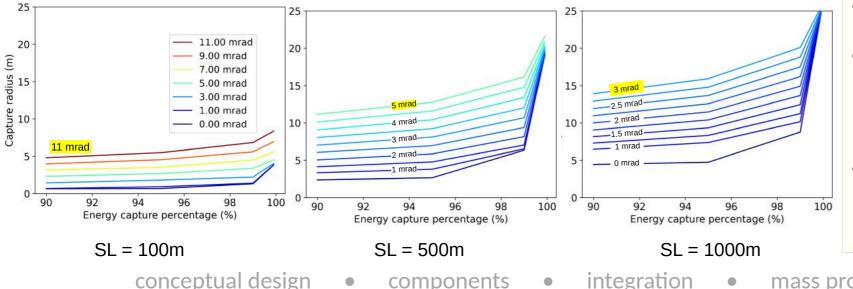
mass production

heliostat field



Collimated rays, ideal case


Reflectors in 12 configurations, 0 surface, 0 slope error, on-axis arrangement, ideally focused

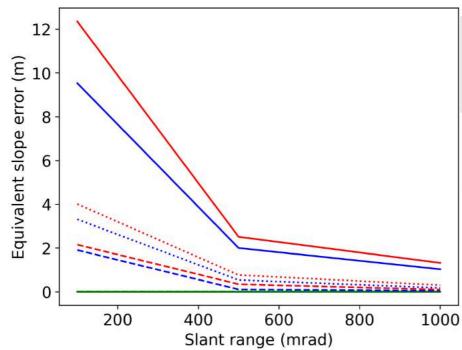

- Without sunshape and surface slope errors, the beam shape remains unchanged across different slant (SL) ranges.
- A spherical reflector with a radius of curvature (ROC) twice the SL range provides the same concentration ratio as an ideal paraboloid reflector.
- A single-facet parabolic-cylindrical reflector offers a line focus feature and performs better than a flat single-facet reflector.
- Using multiple ideally canted facets by the slant range significantly increases the concentration ratio for both flat and parabolic-cylindrical facets.
- More canted facets result in better concentration because the overall shape of the collector more closely resembles a paraboloid.
- Ideally canted 5x5 flat facets can reduce the capture radius from 5–6m to around 1m, comparable to parabolic-cylindrical facets.

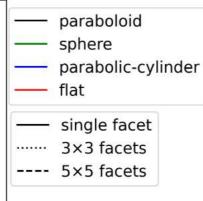
Buie sunshape

Reflectors in 12 configurations, 0 surface slope error, on-axis arrangement, ideally focused

An ideal paraboloid reflector with slope errors (focal length = slant (SL) range)

- When sunshape is included, beam shapes spread more as the SL range increases.
- There is no performance difference between an ideal paraboloid concentrator and a flat reflector when they are far from the target. For a heliostat 1 km from the target, the beam tail can extend to 25 m.
- Equivalent slope error (ESE) is the slope error on an ideal paraboloid that matches the capture radius of an "as-is" heliostat configuration.


nents

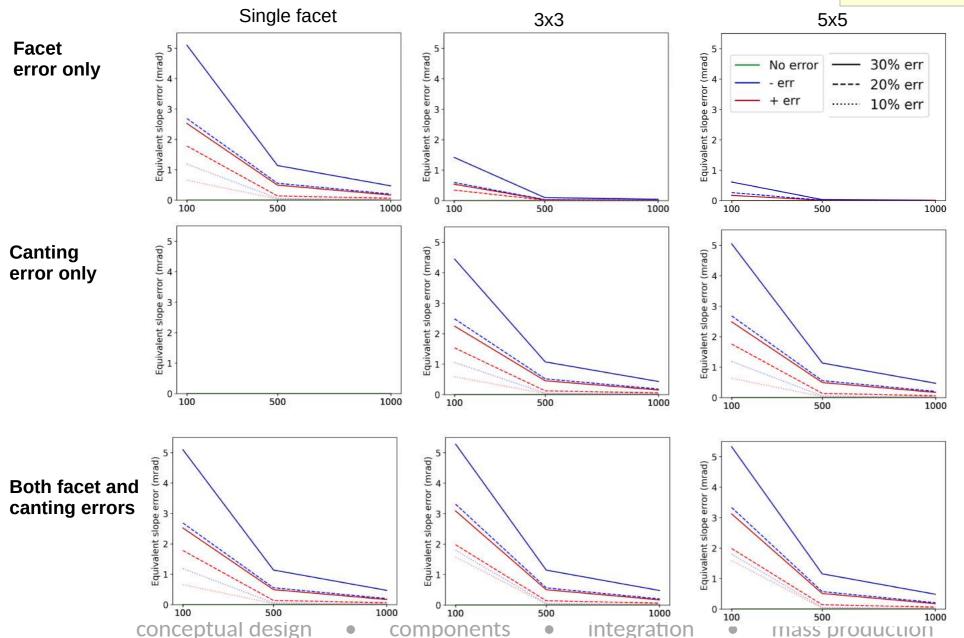

integration
mass production
heliostat field

Equivalent slope error (ESE)

Reflectors in 12 configurations, 0 surface slope error, on-axis arrangement, ideally focused

ESE (mrad)	Single	3×3	5×5	Single	3×3	5×5	Single	3×3	5×5
ESE (IIIIau)	SL = 100 m			SL = 500 m			SL = 1000 m		
Paraboloid	0	0	0	0	0	0	0	0	0
Sphere	0	0	0	0	0	0	0	0	0
Parab-cylinder	9.5	3.3	1.9	2.0	0.5	0.1	1.0	0.2	0
Flat	12.3	4.0	2.2	2.5	0.8	0.3	1.3	0.3	0.1

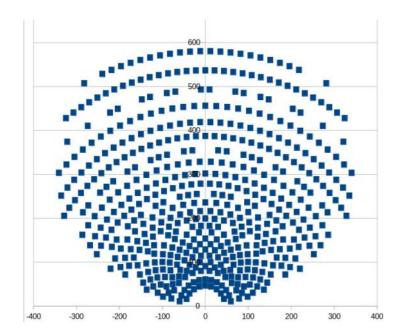
- Spherical facets perform as well as a paraboloid.
- Non-ideal shape heliostats perform better and is comparable with ideal shape heliostats at greater distances due to sunshape spreading the beam.
- A single flat facet is equivalent to 12.3 mrad at 100 m from the target, but reduces to 1.3 mrad at greater distances.
- A 5x5 flat-facet heliostat is equivalent to 2.2 mrad at 100 m and performs almost as well as an ideal paraboloid with 0.1 mrad ESE.


ESE of facet focus and canting errors

Paraboloid facets

•

Radius of 95% energy capture

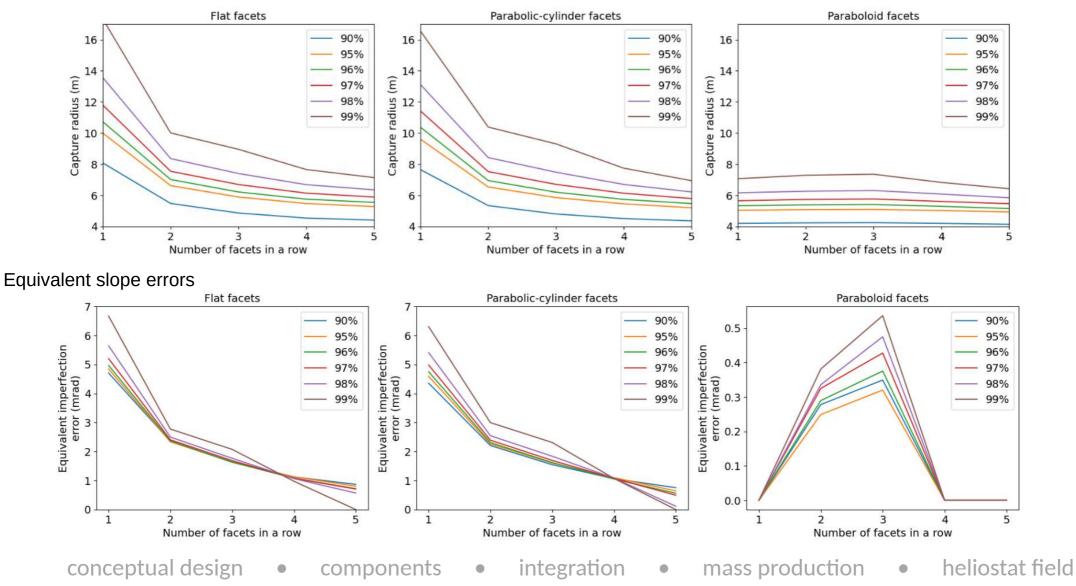


- A negative error indicates a shorter focal length than the ideal focus, while a positive error indicates a longer focal length.
- A negative error means the reflector is more curved.
- A positive error means the reflector is flatter.
- A more curved reflector generally performs worse than a flatter one.
- More facets allow for greater tolerance of facet-level errors.
- A 5x5 flat-facet heliostat has only 2.2 mrad at 100 m

• heliostat field

Full field case

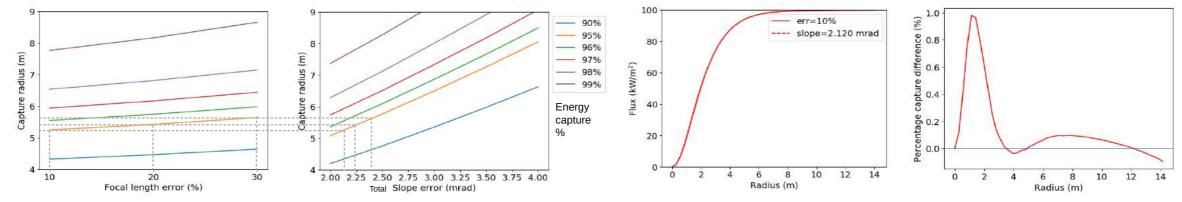
- Design point: summer solstice, solar noon azi=180, ele=78
- Heliostat layout: 524 heliostats
- Aiming point (0, 0, 62)
- 20 million rays using Solstice ray tracing program



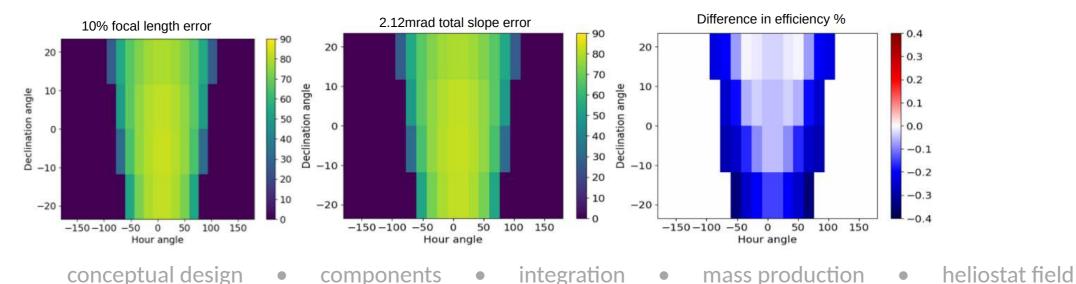
	*	
site location:	Barstow, CA (N34º53', W116º56')	
sun shape	Buie	
CSR:	0.02	
DNI W/m2	1000	
Atmospheric Attenuation	0	
Не	eliostat	
shape	Paraboloid	
mirror width and height (m)	10	
focal length (m)	slant range	
mirror reflectivity:	0.95	
Normal slope error	2 mrad	
Tracking	azi-ele	
Re	eceiver	
shape:	Flat square, billboard	
width and height (m)	20	
absorptivity	1	
location:	(0,0,62)	
rotation	0 (vertical)	

Results - full field, design point

Ideal focus and canting for facets in different shapes



Results - full field, annual performance



Matching capture radius of 95%

- It is hard to use an equivalent slope error to fit the whole flux distribution
- but it is ok to use an ESE to predict the energy capture

Verification: annual optical efficiency for the 10% focal length error

Conclusions and future work

- ESE is obtained by matching the radius of energy capture between an 'as-is' flux map and an ideal paraboloid heliostat with a slope error.
- It is validated that the ESE obtained at the design point for the full field can be applied to annual performance analysis.
- ESE offers a straightforward way to compare the magnitude of different types of beam errors.
- When sunshape is included, beam shapes spread more as the SL range increases. There is no performance difference between an ideal paraboloid concentrator and a flat reflector when they are far from the target.
- Non-ideal shape heliostats perform better and are comparable with ideal shape heliostats at greater distances due to sunshape spreading the beam.
- A single flat facet is equivalent to 12.3 mrad at 100 m from the target but reduces to 1.3 mrad at greater distances.
- A 5x5 flat-facet heliostat is equivalent to 2.2 mrad at 100 m and performs almost as well as an ideal paraboloid with 0.1 mrad ESE.
- More facets allow for greater tolerance of facet-level errors.
- A more curved reflector generally performs worse than a flatter one.

Future Work:

- How to use the ESE of a single heliostat to obtain the ESE of the whole field.
- Investigate more types of optical errors.

Questions?

csp.sandia.gov

Subscribe to HelioCon:

- Heliostat.Consortium@nrel.gov