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Heliostat Consortium Task 8: 
Technoeconomic Analysis (TEA)
Objective: Develop techno-economic models to support the 
assessment and development of new heliostat concepts
• Develop capabilities to:

• Model economic viability of new heliostat designs
• Perform analysis on fundamental problems that would promote 

heliostat economics in general
• Provide analysis and support to guide HelioCon R&D directions 

and portfolio
• Quantify tradeoffs and interactions of heliostat design, 

manufacturing, and operation to illustrate R&D benefits on a 
"total system" level
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HelioCon Task 8: Technoeconomic Analysis
FY2022 
• Developed baseline heliostat 

fields and benchmarked existing 
heliostat/CSP costs

• Large Electric Field case (LE)
• Modular Electric Field case (ME)
• Industrial Process Heat case (IPH)

• Assessed R&D ideas from other 
topics for potential CSP cost 
reductions (i.e., is it worth 
studying?)

Zolan A, Augustine C, Armijo K. Equivalent Breakeven Installed Cost: A Tradeoff-Informed Measure for Technoeconomic 
Analysis of Candidate Heliostat Improvements. Pressented at SolarPACES 2023 Conference. National Renewable Energy 

Laboratory; 2023. https://www.nrel.gov/docs/fy23osti/84002.pdf

Zolan A, Augustine C, Armijo K.“Case Studies and Parametric Analysis of Heliostat Performance with a Tradeoff-informed 
Technoeconomic Analysis Metric” J. Sol. Energy Eng. November 2013, 135(4): 040301.

https://www.nrel.gov/docs/fy23osti/84002.pdf
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HelioCon Task 8: Technoeconomic Analysis
• FY2023 Goal: Characterize 

concentrating solar power tower 
fields for solar industrial process 
heat (SIPH) as a function of 
temperature 

• Motivation: 
• Decarbonization of industrial sector 

will require substitute for burning 
fuels to generate high-temperature 
process heat

• CSP power tower is only renewable 
energy tech with high temperature 
thermal energy (>500+ oC) as its initial 
output

McMillan CA, Schoeneberger CA, Zhang J, et al. Opportunities for Solar Industrial Process Heat in the United States. 
National Renewable Energy Laboratory; 2021. https://www.nrel.gov/docs/fy21osti/77760.pdf

https://www.nrel.gov/docs/fy21osti/77760.pdf
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SIPH Field Layout Methodology
1. Choose SIPH process 

temperatures for analysis
2. Develop base case field layout 

for each  process temperature
• SolarPILOT is our modeling tool
• Collaborating with Australia National 

University, using SolarTherm

3. Screen results
4. Add cost estimates
5. Parametric and optimization 

studies
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SIPH Field Layout – Selected Temperatures

• Temperatures selected after 
literature review

• Selections chosen to cover a 
wide range of temperatures and 
a number of key high-
temperature industrial processes 

• We are concerned with heliostat 
field layout – actual process is 
not considered. 

• Assume heat delivered to off-sun 
process or storage

Calcination (cement)
• 900 oC 
Solar Fuels (ex., hydrogen 
production)
• 1,200 oC
Clinker production 
(cement)
• 1,550 oC
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SIPH Field Layout Assumptions
1. Limit analysis to field, receiver, 

and tower
2. Assume polar field and cavity 

receiver are needed 
• Li L, Wang B, Pye J, Lipiński W. Temperature-

based optical design, optimization and 
economics of solar polar-field central 
receiver systems with an optional 
compound parabolic concentrator. Solar 
Energy. 2020. 
https://doi.org/10.1016/j.solener.2020.05.088. 

3. Assume blackbody radiation for 
heat loss from cavity receiver
• [Li et al. 2020]

4. Fixed heliostat-receiver height 
ratio across runs (~0.7)
• Attempt to keep spillage consistent 

across search

https://doi.org/10.1016/j.solener.2020.05.088
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SIPH Field Layout Assumptions – Black Body 
Radiation
• Radiation losses increase 

significantly with 
temperature

• Stefan-Boltzmann’s law: 
radiation directly 
proportional to the 4th 
power of temperature 
(losses ~ T4)

• Receiver efficiency a 
strong function of CR as 
temperature increases
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Solar Power Tower Integrated 
Layout and Optimization Tool 
(SolarPILOT)
• Create heliostat layouts
• Simulate receiver flux profiles
• Optimize tower, receiver, and 

layout configurations
• Integrated SolTRACE ray-

tracing engine
• Accessible by external 

programs
• Open source

SolarPILOT “Overview of NREL's SolarPilot(TM) and SolTrace Open-source Software” 
https://www.youtube.com/watch?v=wiYV2VLqr_k 

https://www.youtube.com/watch?v=wiYV2VLqr_k
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SIPH Base Case Heliostat Field Layouts

• Assumed a 10 MWth receiver for 
each temperature

• Generated polar heliostat field 
optimized for tower height and 
elevation angle

• Field layout similar across cases
• Since receiver power is 10 MWth 

for each, higher temperatures 
result in a smaller receiver

• Smaller receiver = smaller 
heliostat (fixed ratio)

Field Efficiency:
71.7%
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SIPH Base Case Heliostat Field Layouts

• Assumed a 10 MWth receiver for 
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Field Efficiency:
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SIPH Base Case Heliostat Field Layouts

• Assumed a 10 MWth receiver for 
each temperature

• Generated polar heliostat field 
optimized for tower height and 
elevation angle

• Field layout similar across cases
• Since receiver power is 10 MWth 

for each, higher temperatures 
result in a smaller receiver

• Smaller receiver = smaller 
heliostat (fixed ratio)

Field Efficiency:
55.6%
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SIPH Heliostat Field Optimization
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SIPH Heliostat Field Optimization
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SIPH Heliostat Field Optimization – Status

Discrepancy between concentration ratio (CR) and average flux:
• CR = actual flux/reference flux 

• (reference = 1,000 W/m2)

• CR is input to our simulations
• We give it design receiver thermal power capacity (MW) and receiver area 

(m2) as the CR being studied

• Average flux output from model is much lower than what would be 
expected from CR

• Troubleshooting what the error might be
• Will also compare with Australia National University results when available
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SIPH Heliostat Field Optimization – Next Steps

1. Troubleshoot SolarPILOT scripts to fix CR/heat flux discrepancy
2. Study efficiency as function of process temperature and receiver 

load
3. Add in screens for realistic effects

• Practical maximum heat flux limitations
• Mirror and receiver size check
• Blackbody radiation vs. cavity receiver performance

4. Add in cost estimates
5. Optimize levelized cost of heat (LCOH) as a function of heliostat, 

tower, and receiver costs
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HelioCon Task 8: TEA

Application of Results to Industry
• Implications for heliostat design – likely to be smaller, more accurate for SIPH 

systems
• Implications for decarbonization of industry – many small towers rather than 

large central towers
• Tradeoff in field size vs. capacity factor for supplying a thermal load over the year

• Impact of receiver design and performance on field layouts
• Impact of receiver flux limitations on field size
• Impact of heliostat costs 

• Goal is to identify most likely field and tower/receiver configurations to be 
used for SIPH and key parameters to focus RD&D on to lower costs. Encourage 
industry and investors to use results to focus on standard design concepts and 
economy of scale for SIPH systems.
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Thanks!

Questions?
Contact: chad.augustine@nrel.gov
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